
Energy Economics 33 (2011) 24–32

Contents lists available at ScienceDirect

Energy Economics

j ourna l homepage: www.e lsev ie r.com/ locate /eneco
Portfolio optimization using Mixture Design of Experiments: Scheduling trades
within electricity markets

Francisco Alexandre de Oliveira, Anderson Paulo de Paiva, José Wanderley Marangon Lima,
Pedro Paulo Balestrassi ⁎, Ronã Rinston Amaury Mendes
Federal University of Itajubá, Av BPS, 1303, Itajubá, Minas Gerais, 37500-903, Brazil
⁎ Corresponding author. Tel.: +55 35 36291150; fax:
E-mail addresses: pedro@unifei.edu.br, ppbalestrass

0140-9883/$ – see front matter © 2010 Elsevier B.V. A
doi:10.1016/j.eneco.2010.09.008
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 December 2009
Received in revised form 24 September 2010
Accepted 25 September 2010
Available online 1 October 2010

Keywords:
Mixture Design of Experiments
Portfolio optimization
CVaR and electricity markets
Deregulation of the electricity sector has given rise to several approaches to defining optimal portfolios of
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return. This article presents a novel approach to adjusting the conditional value at risk (CVaR) metric to themix
of contracts on the energy markets; the approach uses Mixture Design of Experiments (MDE). In this kind of
experimental strategy, the design factors are treated as proportions in a mixture system considered quite
adequate for treating portfolios in general. Instead of using traditional linear programming, the concept of
desirability function is here used to combine the multi-response, nonlinear objective functions for mean with
the variance of a specific portfolio obtained through MDE. The maximization of the desirability function is
implied in the portfolio optimization, generating an efficient recruitment frontier. This approach offers three
main contributions: it includes risk aversion in the optimization routine, it assesses interaction between
contracts, and it lessens the computational effort required to solve the constrained nonlinear optimization
problem. A case study based on the Brazilian energy market is used to illustrate the proposal. The numerical
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1. Introduction

In the last two decades, the electrical power systems of countries
around the world have undergone many transformations. The
impetus behind such transformations has been to introduce market
mechanisms to a sector traditionally under government administra-
tion. Deregulating this sector has allowed the emergence of a market
for electricity and with it a need for a good strategy of buying and
selling electrical energy (Ramos-Real et al., 2009; Carpio and Pereira,
2007). In fact, this is deregulation's basic objective — to maximize the
efficiency of electricity generation and transmission and thereby
lower its costs (Oliveira et al., 2008).

The main problem for the electricity producers is hitting on the
best strategy for selling electricity through a portfolio of contracts.
Designing an optimal portfolio has been the focus of many papers.
Among them can be cited the Markowitz mean-variance model,
establishing the optimal strategy for minimizing the risk and
maximizing the return (Badri et al., 2007). Two others include the
variance–Skewness–Kurtosis-based portfolio optimization (Oliveira
et al., 2007) and the use of genetic algorithm and multi-objective
optimization (Lai et al., 2006).
How to allocate different assets in a profitable portfolio is one of
the major interesting issues in many areas including electricity
market (Delarue et al., 2010; Galvani and Plourde, 2010; Polak et al.,
2010; Green et al., 2010; Huisman et al., 2009; Liu and Wu, 2007).

Markowitz (1952, 1959) is known as the father of modern
portfolio theory. He proved the fundamental theorem of mean-
variance portfolio theory, which holds a constant variance and
maximizes expected return (Delarue et al., 2010; Elton and Gruber,
1997). The objective was to develop a portfolio that maintained the
expected return but with less risk.

In the electricity market the mean-variance portfolio (MVP) has
been used extensively to manage portfolios of contracts that are based
on the expected future consumption profile of a company or a pool of
clients (Huisman et al., 2009). Möller et al. (2010) employed MVP to
determine strategic positions in the balancing energy market and in
identifying corresponding economic incentives in an analysis of the
German balancing energy demand. In the energy market, MVP has also
been employed to indicate that futures for crude oil, natural gas, and
unleaded gasoline fail to enhance the performance of the representative
energy stocks (in terms of return to risk), but do decrease the overall
level of risk exposure borne by passive equity investors (Galvani and
Plourde, 2010). Roques et al. (2008) applied the MVP combined with
Monte Carlo simulations to identify, using their investment returns,
optimal base load generation portfolios for large electricity producers in
liberalized electricity markets. Awerbuch and Berger (2003) used the
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MVP to contribute to the European Union Electricity Planning and
Policy-Making, suggesting diversified generating optimal portfolios
aiming to minimize society's energy price risk.

While Markowitz's seminal work (1952, 1959) has been used
extensively, many authors have contributed to it and modified it in
important ways. Based on the risk metrics defined by Artzner et al.
(1999), one modification that fits very well for electricity is the
conditional value at risk (CVaR), which was used by Badri et al. (2007).
Another important feature of the portfolio theory is the assessment of
the efficient frontier bymeans of quadratic programming or stochastic
dual dynamic programming (Oliveira et al., 2007). These approaches,
however, require high computational efforts and the results do not
incorporate a confidence interval into the optimal value of a contract.
In such cases, the producer has to contract exactly the value obtained
from a mathematical model. When this value fluctuates, the
maximum profit decreases.

This article uses Mixture Design of Experiments (MDE) to define
an optimal contract portfolio for a given company. This technique has
the advantage of considering a multivariate approach that returns a
comprehensive index of desirability for the Total Present Value TPVT
and for the CVaR. This index considers the amount of each asset in a
portfolio and also the interactions between the assets.

This paper is organized as follows: Section 2 discusses the
methodology used for generate optimal portfolios based on the
combination of MDE and MVP, using conditional value at risk (CVaR)
as a risk metrics; this section also presents an overview about the
traditional portfolio optimization based on the mean-variance
approach, the concepts of value at risk (VaR) and (CVaR), the model
building strategy usingMixture Design of Experiments (MDE) and the
desirability function; Section 3 describes the results obtained with the
application of this methodology on Brazilian electrical sector; and
Section 4 gives the conclusion of this paper.

2. Portfolio contracts optimization based on Mixture Design of
Experiments

Portfolio theory seeks to manage risk in a group of assets to
determine a combination that offers the lowest risk and the highest
expected return. Such a group is called an optimal portfolio (Oliveira
et al., 2008). A portfolio of assets is a combination of all potential
assets each one with rate of return, ri (i=1,…,n). The portfolio's
return (denoted by rc) is the weighted average of the component asset

return with the investments proportions as weights (denoted by wi),

on this way, rc = ∑
n

i
wiri. The mean of the probability distribution of

the return, or the expected return, is an indication of the expected
profitability. The variance of the distribution indicates how wide-
spread the possible outcomes around the mean are — the larger the
variance, the more uncertain the outcome. Therefore, the variance of
the distribution can be used as an indication of the risk involved. The

expected return of an asset and its variance can be written as

E rcð Þ = ∑
n

i=1
wiE rið Þ and σ2 rcð Þ = ∑

n

i=1
w2

i σ
2
i + ∑

j≠i
∑wiwjσij, respec-

tively. The covariance σij measures how many of the returns on two
assets move in relation to each other. This is the well known
Markowitz mean-variance model approach (MVP), establishing the
optimal strategy for minimizing the risk and maximizing the return
(Badri et al., 2007).

Suppose now the weights or amounts wi of the MVP model are

considered proportions of a mixture whose sum of weights is unitary

or constrained to a specific bound, such as ∑
n

i=1
wi = 1 or ∑

n

i=1
wi = ξ.

This is exactly the case of an experimental design called “Mixture
Design of Experiments” (MDE).

MDE is a special type of response surface experiment in which the
factors are proportions of components in a mixture (Myers and
Montgomery, 2002; Cornell, 2002). These proportions are not
negative, and if they are expressed as a fraction of the total mixture,
the sum must be equal to one. The space formed by the mixing
experiment for components described as a simplex coordinate system.
The vertices of this convex region represent the pure mixture; the
points inside the region are mixtures in which none of the
components is missing. The centroid is the mixture with equal
proportions of each component.

The mixture experiment allows establishing the relationship
between the response variables and the relative proportion of
components in terms of a mathematical equation which provides the
identification of the influence of the proportion of each component and
its combination with other components on the response variable.
Generally, the functional relationship between the response variable
and the proportions of q components is the defined by a polynomial of
degree m, which can be a linear, quadratic, or cubic depending on the
goals of practitioner. Eq. (1) shows a special cubic model.

E xð Þ = ∑
q

i=1
β�i xi + ∑∑

q

ibj
β�ijxixj + ∑∑

ibjbk
∑
q

β�ijkxixjxk ð1Þ

The coefficients βi
* show how each component contributes to the

response variable. In the same fashion, term βij
* indicates what is the

combined effect of components i and j. Indeed, for the linear model
βij
* =β0+βi and for the quadratic model, it is possible to write:

βi
*=β0+βi+βii and βij

* =βij−βii−βij. These coefficients are esti-
mated using the Ordinary Least Squares algorithm.

As mentioned earlier, there is a relationship between the (q, m)
simplex and (q, m) polynomial so that there is a correlation between
the number of points in the simplex and the number of terms in the
polynomial. Thus, the parameters or coefficients of the polynomial can
be determined by the values obtained for the response variable for
each point in the simplex (Cornell, 2002).

When we compare the MDE to the traditional MVP approach, it is
straightforward that themean-variance equationsmay bewritten as a
mixture response surface, where the amounts of capital investment in
q contracts or assets are defined by the type of mixture design
(extreme vertices, simplex lattice, or simplex centroid). However, this
is not enough. Despite its gradual acceptance and dissemination, the
mean-variance model has some drawbacks. First of all, MVP penalizes
both positive and negative deviations from the average, the variance
may not be best suited for measuring the risk of a portfolio. The return
variability, when positive, should not be penalized; investors worry
not about high returns but about low ones. The problems facing
portfolio optimization arrive in two stages: the first, defining a metric
of risk; the second, using this metric in the optimization model.

One risk metric that encompasses the potential loss of an
investment is the value at risk (VaR). The VaR is the maximum
amount of money that may be lost on a portfolio over a given period of
time, with a given level of confidence (Marimoutou et al., 2009). This
metric describes the loss that can occur over a given period at a given
confidence level, due to exposure to market risk (Lai et al., 2006). As
explained in 1), the first step inmeasuring the VaR is to select the time
horizon and level of confidence (Rockafeller and Uryasev, 2001).

Although the VaR provides information about expected losses over a
periodof time for a given confidence level, the losses that exceed theVaR
are unknown. Moreover, the VaR metric is not a consistent measure of
risk, which means it is not sub added. Finally, the VaR is not a convex
function of hard minimization (Artzner et al., 1999; Dalhgren et al.,
2003).Nevertheless, an adjustmentmaybemade to theVaR, changing it
to another metric known as conditional value at risk, CVaR (Rockafeller
and Uryasev, 2001; Dalhgren et al., 2003) defined by Eq. (2):

ϕc wð Þ = 1−cð Þ−1∫f w;yð Þ≥υc wð Þf w; yð Þp yð Þdy ð2Þ
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where c is the confidence level; υc(w) is the VaR; f(w,y) is the return
function; p(y) is the probability density induced by the uncertainties
of the y variable (in this case the spot price).

In Eq. (2), the probability of f(w,y)≥υc(w) is equal to (1−c). Thus,
Φc(w) comes out as the conditional expectation of the loss associated
with w, relative to the loss being υc(w) or greater. In this way, we may
characterizeΦc(w) and υc(w) in terms of the function Fc which may be
integrated by sampling the probability distribution of y according to its
probability densityp(y). If the sampling creates a collection of vectors yk,
where k=1 to q, the approximation of Fc(w,υ) results in Eq. (3).

Fc w;υð Þ = υ +
1

q 1−cð Þ ∑
q

k=1
f w; ykð Þ−υ½ � ð3Þ

The optimization problem written in terms of CVaR can be solved
by linear programming techniques with large numbers of both assets
and scenarios. Employing such techniques requires complex meth-
ods: (cutting plans) (Mansini et al., 2001; Pereira, 2002), benders
decompositions (Birge and Loveaux, 1997; Ruszczynski, 1997) and still
others (Sen and Higle, 1999). Moreover, applying these takes
enormous computational effort while the optimal point obtained
may not even be feasible for the company. For example, if the
company is an agent of generation, the response variable wi, which
represents howmuchmust be sold through bilateral contract i, can be
a value that is difficult to negotiate for the company. In others words,
the mathematical response is difficult to implement.

Then, is this novel approach, the portfolio variance σ i
2 can be

written in terms of CVaR with weights or amounts wi defined by the
chosen MDE.

The design of an optimal portfolio is also a nonlinear multi-
objective optimization task treating the simultaneousminimization of
the risk and maximization of the return. To accomplish with this
objective, risk and return equations are generally combined in a form
of a utility function, such as U=E(rc)−0.5λσ2(rc), where λ is the
weighting factor that reflects the decision maker's preference or risk
aversion (Roques et al., 2008). When dealing with MDE, we can also
adapt the concepts of return, risk (CVaR) and utility for the energy
market through desirability function, a multi-objective optimization
transformation which allows the combination of risk and return and
also allows the introducing of the investor's aversion to risk (λ).
Additionally, one can define regions and ranges of responses for each
variable where the maximum return and minimum risk do not vary.

Available in several statistical packages, desirability function is a
transformation of each estimated response variable of interest Ŷ l

� �
to a

desirable individual value, (di),which varies from0 to 1 according to the
closeness of the solution to the established targets. This transformation
is obtained in terms of lower (Li) and upper bounds (Hi) or target (Ti)
chosen for each response. After that, the individual transformations are
combined through a geometric mean with the degree of importance of
each responses (ζi), chosen according to the practitioner's interest. In
fact, ζi indicates the importance of eachproperty in relation to theothers
in the multi-objective optimization. The D value measures the overall
desirability andmust lie in the interval [0, 1] (Derringer and Suich, 1980;
Myers and Montgomery, 2002).

Considering theMarkowitzmean-variance approach using CVaR as
a risk metrics and adopting the transformations obtained through
desirability functions, a portfolio contracts optimization approach
based on Mixture Design of Experiments could be written as:

Maximize D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dTPVT × dCVaR

p
s:t:: dn + 1ðyiÞ≥D; i = 1;2; :::; k

D≥0

x∈Ω

ð4Þ
With:

dTPVT =

0
TPVTi−Lið Þ
Ti−Lið Þ

� �λ

1

if TPVTibLi
if Li≤TPVTi≤Ti
if TPVTi N Ti

8>>><
>>>:

ð5Þ

dCVaR =

0
Hi−CVaRið Þ
Hi−Tið Þ

� �λ

1

if CVaRi N Hi

if Li≤CVaRi≤Ti
if CVaRibTi

8>>><
>>>:

ð6Þ

TVPTð Þi;j = ∑
T

t=1
∑
I

i=1

1
1 + taxð Þt−1

×f ∑
N
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hn=1

kn≥t
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t −COP
� �
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t
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ð7Þ

CVaRð Þi;j = Fc w; vð Þ = v +
1

q 1−cð Þ ∑
q

k=1
f w; ykð Þ−v½ � ð8Þ

CVaR; TPVTð Þportfolio = ∑
q

i=1
β�
i xi + ∑∑

q

ibj
β�
ijxixj + ∑ ∑

ibjbk
∑
q

β�
ijkxixjxk

ð9Þ
Where:

dn+1(yi) is the desirability function of the yi on (n+1)th run;
Ω denotes the lower and upper bounds chosen for the

proportions of each contract.
Li desirability lower bound.
Ti desirability target.
Hi desirability upper bound.
λ desirability weights (risk aversion).
Dt,s is the dispatch of the company at time t for the s series.
xn is the energy volume that may be traded through n bilateral

contract candidates.
P=(P1,..., Pn) is the energy price associated with the n bilateral
contract candidates.

COP represents the plant generation costs.
Jn is the start time of contract candidate n.
Kn is the contract's end time.
i is the ith energy submarket.
tax is the income tax or the cost of capital (%).

In Eq. (7), TVPT is calculated by generating random variables for the
companies' cashflow, using the spot price for each timeperiod t=1,…T,
for a set of spot price series s=1,..., S in a specific submarket i=1,…, I.

In the context of a desirability function, λ is a weight that
emphasizes the interest of the practitioner in optimization, indicating
his preference by the target value or the bounds. For theminimization,
less emphasis is placed on the target when the weight is less than one.
Acceptable is any solution found by the algorithm between the target
and the upper bound. A weight equal to one places the same emphasis
on the target and the bounds. Otherwise, a weight greater than one
forces the algorithm to find a solution as near as possible to the target.
For maximization problems, the approach is similar.

Then in the minimization of CVaR, λ can be considered the
coefficient of risk aversion. Hence, the larger that λ can be fixed for
dCVaR, the more conservative will be the investor profile, since the
desirability will only equal one if the target (a minimum desirable
value) is achieved. λ less than one indicates little risk aversion, and
any solution found between the target and the lower bound will be
reasonable and acceptable. This implies a large CVaR value.
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Fig. 1. Brazilian electrical sector.
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The main advantage of treating λ as a risk aversion coefficient is
the fact that an investor can easily simulate several scenarios for the
portfolios using available statistical software packages like Minitab.

From the aforementioned discussion, the following framework
may be applied by the practitioner when dealing with Energy
Portfolio Contracts:

• Choose the numbers of contracts to build the portfolio and the
mixture design.

• Choose a specific mixture design (extreme vertices, simplex lattice,
or simplex centroid) according to the number of components and
defining if the adopted proportions must be constrained or not.

• Calculate the values of TVPTi and CVaRi for each experiment
generated by MDE according to the Eqs. (6) and (7).

• Fit adequate models for TVPT and CVaR analyzing statistically the
mixture models and searching for the higher R2

adj.
• Obtain the predicted value Ŷi of the ith response of interest (VPTP
and CVaR).

• Choose the desired values for Ti, Hi and Li.
• Apply the desirability function of maximization for TPVT to obtain
dTPVT according to Eq. (5).

• Use the desirability function of minimization for CVaR to obtain
dCVaR using Eq. (6).

• Establish a value for the risk aversion, such as 0.1≤λ≤10
• Run the nonlinear optimization routine based on the overall
desirability (D) to obtain the feasible solution.

• If desirable, simulate several values of λ to the portfolio contracts.

As will be seen in the numerical example, the application of
Mixture Design of Experiments considers several scenarios and
predicts how each contract will improve the generator gain.

3. Mixture Design of Experiments applied to portfolio of contracts
in Brazilian electrical sector

In Brazil, restructuring the power system introduced new agents:
the National Regulatory Agency (ANEEL), the Independent System
Operator (ONS), the Wholesale Electricity Market (CCEE) and the
Energy Planning Institution (EPE). More recently (2004), Law 10.848
was enacted establishing new rules for the Brazilian wholesale
market. One major change introduced two trade environments: the
Regulated Trade Environment (RTE) and the Free Trade Environment
(FTE). The RTE was designed for the captive consumers represented
by the distribution companies. The agencies ANEEL and CCEE, acting
on the behalf of the distribution companies, conduct centralized
auctions for buying electricity.

The prices at the FTE are called market clearing prices (MCP) and
are set by the marginal cost of the energy. This cost is derived from an
optimization program called NEWAVE (Paravan et al., 2004; Joy et al.,
2004). Although the market sets the prices of bilateral contracts at the
FTE and for auction bids at the RTE, the MCP serves as a guide for
contracts in both environments.

The MCPs, i.e., the spot prices, are sensitive to the water inflows at
the reservoirs of hydropower plants. Such sensitivity makes them
volatile. 67.53% of Brazil's produced electricity comes from hydro-
generation. The inflow uncertainties and the consequent volatility in
electricity prices create a need for market players to hedging bets. By
using bilateral contracts, for instance, the generators can sell their
energy to the distributors under RTE or directly to a free end-
consumer. They can thus avoid exposure to the volatility of MCP
under FTE.

Brazil's market system is known as “tight pool.” This means that
the National System Operator (NSO) determines the dispatching of
plants as well as the spot price πt,s, using Newave Software. In fact,
Newave is used to plan the operation of the electrical system and
implements dual stochastic dynamic programming to minimize the
total cost of the system's operation (Carpio and Pereira, 2007). It
generally uses five years as a time horizon.

The restructuring process in Brazil started in 1997 when the
wholesale market was established. In 2004, after the rationing that
took place in 2001, the government changed the market rules trying
to basically ensure long-term investment (Ramos-Real et al., 2009;
Carpio and Pereira, 2007). The elements of this new regulatory policy
seek to promote joint use of available resources for energy generation
(including renewable), strategies in relation to demand/contract to
ensure a level of security and, finally, the integration of agents of
monitoring and an evaluation system for the short and long-term. The
current structure, according to Fig. 1, covers two areas of engagement:
the Regulated Trade Environment (RTE) and the Free Trade
Environment (FTE).

The FTE maintains the rules of the previous wholesale market. The
new RTE is managed through auctions by the government, resembling
the single buyer model. At the end of the auction, negotiations to
purchase and sell energy are formalized by the CCEE through bilateral
contracts. These contracts are known as Contract for Sale of Energy in
a Regulated Environment (CSERE). The environment of free contract-
ing, negotiations, and bilateral contracts is freely established between
free customers and producers. Thus, producers can sell energy on the
FTE or the RTE.

In addition to their long-term contracts, agents can sell electricity
on the spot market, which is included in the FTE. The rules were
designed, however, to let agents avoid exposure to the spot market's
volatility; e.g., distributors are obliged to enroll in long-term contracts
of 100% of their forecasted load. For the spot market, one of the most
important variables is theMarket Clearing Prices (MCP). TheMCP, due
to the predominance of hydro-generation, is quite volatile; its level is
connected with the amount of rainfall. In periods of low inflow at the
reservoirs, the MCP is quite high. The ANEEL provides a ceiling and
floor for the MCP. In 2008 the ceiling was $291.36/MWh and the floor
was $7.66/MWh.

Based on these characteristics of the Brazilian market, electricity
producers initially have three alternatives: 1) selling their energy to
the distributors participating in the government auctions, 2) selling
directly to the free consumers, or 3) waiting to sell on the spot market.
This situation is analogous to an investor having three types of assets
to invest, with all the risk that attends each. The optimal portfolio
determines a point of operation that considers the total amount of
energy generated by the plant, a plot for the bilateral contracts
derived from the auctions or agreed to directly with the free
consumers, and the remainder energy going on the spot market.
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Table 2
TPVT and CVaR coefficients.

Coefficients βij
*

Contracts TPVT CVaR

I1 265.83 290.71
I2 216.21 261.48
I3 234.33 230.33
I4 265.83 225.15
I5 161.96 −22.02
I6 156.42 1631.36
Is 203.88 −2.07
I1×I2 – −0.82
I1×I3 – −1.11
I1×I4 – −0.39
I1×I5 – 0.42
I1×I6 – −4.14
I1×Is – −0.80
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The theory of portfolio optimization can help producer's decision-
making process regarding minimizing risks and maximizing returns.
This theory must be adapted to the electricity sector. Specifically in
Brazil the MCP is not freely obtained from the dynamic between
supply and demand, but from a computational model. Moreover,
there are rules that also affect themarket. One example is the case of a
producer with operating costs higher than the MCP. In such a
situation, the energy is not dispatched. This agent will have to buy on
the spot market the total energy that the company traded through
bilateral contracts.

The following input variables are considered on the Newave: initial
levels of the reservoir, demand for energy by the subsystem, cost of
thermal classes of fuel, setup of hydraulic power plants, and setup of
thermal power plants, the possible exchanging of energy between the
subsystems, and, finally, the expansion or increase in supply (new
power plants built). Based on the report Programming Monthly
Operation (PMO), under ONS, the input variables are released
monthly. The simulation using Newave used the data provided by
the January 2007 report. Fig. 2 shows the evolution of the spot price
for the considered time.

The spot price presents a trend and greater dispersion for the
months at the end of the planning period. This volatility in prices
makes the generator revenue fluctuate as well.

Table 1 presents the characteristics of the bilateral candidate
contracts considered in this study. In this table, one can see the
demand in MWh and as a percentage of the capacity of the plant. All
the contracts were performed in the southeastern and central western
region (SE/CO). The starting month was January (01).
Table 1
Candidate contracts to compose portfolio.

Contract End Month Price $/MWh Maximum
volume MWh

Maximum
volume — % U

I1 12 42.50 150 0.300
I2 24 41.25 457 0.914
I3 48 49.10 294 0.588
I4 12 42.50 239 0.478
I5 24 38.30 74 0.148
I6 48 39.10 47 0.094
The company has a thermal gas power plant with an installed
capacity of 500 MW. The plant is considered flexible without any
minimum dispatch. The plant's operating cost is the sum of fuel costs
and the cost of operation and maintenance, equaling $32.50/MWh.
The study's horizon is forty-eight months. The company can trade in
the spot market, Is, considering the spot price. As we have a higher
constraint for each component, representing the maximum demand
in each contract, we should use the experiment calledMixture Extreme
Vertices Design (Wheeler and Chambers, 1992; Piepel and Cornell,
1994; Wheeler, 1995; Chongqi, 2001; Sadeghi and Shavalpour, 2006).
I2×I3 – 0.28
I2×I4 – −0.83
I2×I5 – 1.20
I2×I6 – −2.81
I2×Is – 0.07
I3×I4 – −0.92
I3×I5 – 1.23
I3×I6 – −2.61
I3×Is – −0.34
I4×I5 – 0.38
I4×I6 −4.20
I4×Is −1.37
I5×I6 −2.99
I5×Is 1.59
I6×Is −7.20



Table 3
Statistical properties of TPVT and CVaR models.

S R2 (%) R2pred (%) R2Adj (%)

TPVT 0.0108 100 100 100
CVaR 8359 98.6 97.3 98.3
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Thus, according to the number of components in the portfolio
(Table 1) and considering the trading on the spot market (Is), the
experimental region has 66 vertices 176 edges and 256 faces. The
experimental data has 141 runs and statistical analysis is performed
using Minitab® 14. Table 2 presents the model coefficients for the
invested amounts in each candidate contract and the responses TPVT
and CVaR with I=1,2,...,7 and j=1,2,...,7 and Is= I7.

Actually, in the experimental design, the analysis of variance was
used and the hypotheses were tested to check the influence of an
investment in a particular contract and of the variables TPVT and CVaR.
As the significance level is 0.05, all factors and interactions among the
factors that have a P-value less than 0.05 cause a significant effect on
the variables. The equations that describe the behavior of TPVT and
CVaR are given below.

TPVT = 265:83I1 + 216:21I2 + 234:33I3 + 265:83I4

+ 194:65I5 + 156:42I6 + 203:88IS

ð10Þ

CVaR = 290:71 I1ð Þ + 261:48 I2 + 230:33 I3 + 225:15 I4

+ 225:02 I5 + 1631:36 I6−−2:07 Is−0:82 I1 × I2

+ 0:42 I1 × I5−4:14 I1 × I6−0:80 I1 × I5 + 1:2 I2 × I5

+ −2:81I2 × I6 + 0:07 I2 × I5 + 1:23 I3 × I5−2:61 I3 × I6

+ 0:38 I4 × I5−4:21 I4 × I6 + −2:99 I5 × I6 + 1:59 I5

× IS−3:60 I6 × Is ð11Þ

The equations of TPVT and CVaR were obtained using an OLS
algorithm. Table 3 presents the statistical properties of their models.
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The statistical models for TVPT and CVaR present a reasonable
power of explanation, revealing small values for the standard error S
and large values for R2 and R2Adj. Figs. 3 and 4 show that the residuals
are i.i.d. (independently and identically distributed), normally
distributed, meaning the models are reliable.

The optimal portfolio definition consists of determining which
contracts should be chosen. Figs. 5 and 6 show the sensitivity analysis
for the variables TPVT and CVaR using the Cox response trace plot.

Each component in the mixture has a corresponding trace
direction. The points along one trace direction of a component are
connected, thereby producing as many curves as the number of
components in the mixture.

Response trace plots are especially useful when there are more
than three components in the mixture and the complete response
surface cannot be visualized on a contour or surface plot. The response
trace plot can be used to identify the most influential component and
it can be employed as a tool for a sensitivity analysis. The response
trace plot shows how the responses change when the proportion of
each component in the mixture increases.

In Fig. 5, the vertical axis represents the values for the return
(TPVT) and the horizontal axis represents the change in the quantities
of each candidate in the contract portfolio. The reference portfolio is
represented as the zero point on the horizontal axis. According to this
figure, contracts I1 and I4 are the most important to explain the return
(TPVT). In fact, when increasing the amount invested in these
contracts, the return of the portfolio also increases. On the other
hand, the return of the portfolio falls when the amount invested in
these contracts decreases. The investment on contract I2 presents an
opposite behavior. This occurs because I2 has the lowest return per
MWh, or $12.3(β2=β2

* −β0 ;β0=203.88).
A similar behavior occurs with I5 and I6. It can be seen, however,

that the lines present a more pronounced slope. Thus small variations
in the amount invested in these contracts greatly impact the TPVT
because I5 and I6 have a negative average return per MWh, $41.92 and
$101.08, respectively. For trading on the spot market, IS, we may
conclude that when the amount sold in the spot market decreases, the
TPVT tends to increase. If participation in the spot market increases,
the TPVT tends to decrease.
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Considering CVaR, the contract I3 is responsible formost of the risk. For
trading contract candidates I1 and I4, the risk tends to decrease. For the
contracts, I2, I5, and I6, the variation in the amount invested always causes
an increase in risk. Moreover, the contract I2 contributes mostly to the
increase in risk. Finally, trading on the spotmarket is an option that causes
the largest drop in CVaR. Indeed, an alternative that enables greater TPVT
and lower CVaR is to sell a certain amount of energy to the market and
what's left to bilateral contracts, or diversifying the means to trade the
energy generated by plants. Trading alternatives can be obtained using
multi-objective optimization with the desirability function.

For TPVT, for example, one can set a lower bound of $112.676 with
$115.493 for the target. For CVaR, the target can be defined as $56.338 and
the upper bound as $61.033, since the objective function here must be
minimized.

The desirability functions of TPVT and CVaR are given by Eqs. (5)
and (6), respectively. The weights for the desirability function of CVaR
and TPVT are equal to 10. This provides an important characteristic: it
facilitates including the investor's aversion to risk. Thus, from the
early development of the problem, the investor can feed the system
real information, not approximated or idealized information. This
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gives flexibility to the portfolio optimization. In terms of desirability
function, the transformations can be written as:

dTPVT =

0
TPVTi−112676ð Þ

2817ð Þ
� �10

1

if TPVTib112676

if 112676≤TPVTi≤115493

if TPVTi N 115493

8>>><
>>>:

ð12Þ

dCVaR =

0
61033−CVaRið Þ

4695ð Þ
� �10

1

if CVaRi N 61033

if 56338≤CVaRi≤61033

if CVaRib56338

8>>><
>>>:

ð13Þ

With the support of a computational tool, it is possible to solve this
optimization problem, finding (in MWh): I1=80; I2=0; I3=141,
I4=112; I5=38; I6=24 and Is=104, with TPVT=$116,620.00 and
CVaR=$37,244.13 and D=1. Besides the values of return and risk, it
is possible to verify the stability of the optimum and also define
optimal intervals for each quantity sold in each contract (in MWh):
0≤ I1≤150; 0≤ I2≤230; 0≤ I3≤219; 76≤ I4≤239; 0≤ I5≤11;
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0≤ I6≤37 and 42≤ Is≤172. Fig. 7 describes the efficient frontier for
the presented example.

To build up an efficient frontier we chose all solutions whose total
desirability (D) equaled 1. This ensured the obtained optimum also
corresponded to the maximum value of desirability. By selecting
Points A, B, and C of the efficient frontier, it is possible to check how
much energy is traded in each contract (Fig. 8).

Fig. 9 shows that for Points A, B, and C of the efficient frontier, the
plant sells all of its capacity. For the remaining months, according to
the level of return and risk requirements, the plant tends to decrease
the amount of energy sold. This feature can be explained as follows:
the contracts I1 and I3, with higher returns per MWh are established
for a period of twelve months while the remaining ones are
established for longer periods. Furthermore, trading in the energy
market is an alternative only used to reduce risk in the portfolio,
reducing the amount of energy sold in this kind of negotiation.

The demand profile of the plant suggests that the plant can
schedule a future contract, starting on Day 13. The same occurs on Day
24. Thus, the company may sell in any period all of its production
capacity. This analysis with future contracts, however, should be
performed considering the investor's objective, that is, maximizing
return and minimizing risk.

4. Conclusions

This work proposes a methodology for a producer trading energy
on the electricity market. The methodology, used to optimize energy
contract portfolios, uses CVaR as a risk measure. Mixture Design of
0

50

100

150

200

250

300

350

400

I1 I2 I3 I4 I5 I6 Is

Candidate Contract

D
em

an
d

 f
o

r 
ea

ch
 c

o
n

tr
ac

t-
[M

w
h

] A B C

Fig. 8. Contracts mix variation.
Experiments (MDE) was used as a strategy to build up nonlinear
models of risk and return according to the proportions of desired
contracts. This approach is innovative when compared to traditional
methodologies like linear or dynamic programming to obtain the
efficient frontier for CVaR. The energy contract portfolio was modeled
as a mixture problem, considering each contract as a component to
explain the behavior of risk and return.

The first step of the methodology is to choose the number of
contracts that the portfolio will comprise and also to choose the
mixture design and the specific mixture design. The second step is to
calculate the values of TVPT and CVaR, using them as return and risk
equations. By combining these equations with contract proportions,
we can obtain two response variables forMDE. These can be fitted by a
statistical package using the Ordinary Least Squares (OLS) algorithm.
Since the statistical models with a higher R2Adj are obtained, we must
choose the desired values for the portfolio bounds Ti, Hi, and Li.
Applying the desirability function of maximization for VPTP and
minimization of CVaR, and establishing a value to aversion risk
coefficient λ, a nonlinear optimization routine can be used to obtain a
feasible solution to the portfolio contracts.

This paper presented an example, with seven contracts candidates,
from the Brazilian electricity market. In spite of the hypothetical
application, it was possible to define the portfolio efficiency frontier
for desirability equal to 1. In this way, the company's strategy of
trading was defined as a period of 48 months ahead, taking into
account the amount of bilateral contracts on the spot market.

Compared to similar methodologies, the present approach has the
advantage of small computational effort and simple analysis of
responses.
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We here point out further advantages:

• Facilitates the inclusion of risk aversion in the form of coefficient,
helping with the simulation of several scenarios for the portfolios
using commercial statistical software's packages.

• Possibility of measuring the effects over TPVT and CVaR obtained
with the Interactions between contracts.

• Possibility of embodying the problem with real information about
the investment from the project's beginning.

• User-friendly, the desirability makes the decision-making problem
easier to solve.

• The nonlinear equation system formedwith desirability equations is
easier to implement and less time consuming.

• Possibility of including processes or outer variables that can be in
the study.

For future research, we suggest including process variables like
options, collar and swaps in the Mixture Design of Experiments.
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